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Self-replication of a pulse in excitable reaction-diffusion systems
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We investigate self-replication of a pulse in Bonhoffer—van der Pol type reaction-diffusion systems in one
dimension. The interface dynamics of front and back of a pulse developed for a bistable system is extended to
a monostable case, which is useful to clarify the mechanism of the self-replication. We shall show that the
threshold parameter for excitability plays the central role for self-replication. The present theory can be applied
not only to a symmetric pulse, but also to a propagating asymmetric pulse.
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[. INTRODUCTION parameter regime and its initial value dependence.
In Sec. Il, we summarize the behavior of self-replication

Self-replication of a pulse in reaction-diffusion media hasof a pulse obtained numerically in several reaction-diffusion
been observed in real experiments and in numerical simulssystems. The interface dynamics for a breathing pulse in the
tions since the early 90s. In the ferrocyanide-iodate-sulfat@onheffer—van der Pol type reaction-diffusion equation is
chemical reaction’ domains having a h|g|h-| concentration g|Ven in Sec. I”, and the Condltlon for Self-repllcatlon IS
grow and beyond a critical size, each of them deform andlerived. In Sec. IV, we extend our analysis to self-replication
splits into two domain$1]. A quite similar phenomenon has ©f @ propagating pulse. Discussion of the results obtained is
been obtained by numerical simulations of the Gray-Scot@iven in Sec. V.
model in two dimension$2]. In one-dimensional simula-
tions, self-replication of a pulse has been found not only in Il. VARIOUS TYPES OF SELF-REPLICATION
the Gray-Scott moddR3] but also in other excitable reaction

diffusion systems, such as the Bonhoffer—van der(BoP) Co . . USS
model [4] and the Prague modéb,6]. Therefore, the self- replication of a pulse found in reaction-diffusion systems,
it : which is classified as follows.

replication is very common to excitable media. Furthermore, X .
it has been found that self-replication causes regular self- (1) By changing the parameters, a motionless pulse be-

similar spatiotemporal pattertig,7,g). comes unstable in an excitable reaction-diffusion system

At present, there are a few theoretical studies of thes¥/nen the pulse width exceeds a certain critical value and
splits symmetrically into two pulses. This has been studied

self-replications. A qualitative analysis of the transient be- . S S
havior of an unstable pulse near a saddle-node bifurcatioY Kerner and Osipoy11]. A S|mllar replicaiion IS also
has been mad®]. A more quantitative theory including self- fo_und in the Gray-Scott model given by Eqe) and (5)
replication of a traveling pulse has been proposed bgtii, ~ 9iven below[12].

to focus on the slow manifold associated with the pulse mo- . (2) A breathing pL_JIse self-r_eplicates at the instant that its
tion [10]. However, self-replication of a breathing pulse hasidth becomes maximuiig]. Figure 1a) shows an example
not been studied so far. obtained in the BvP-type equations,

In the present paper, we investigate the condition for self-
replication of a pulse in excitable reaction-diffusion systems (7_U_D ﬁ_u+f(u)_ (1)
in one dimension. First, we consider a breathing pulse where ot u NG v
the pulse width is oscillating. In the singular limit, such that
the interfacedfront and back of a pulse is much smaller 2
than the pulse width, we derive the equation of motion for a_sz ﬁ_v+u_ Y )
the interacting interfaces, which is applicable not only to a ot G '
bistable situation but also to a monostable situation. The
theory starts with the assumption that there is a pair of interwhere
faces for a single pulse. However, we will show that this
assumption does not always hold when the system is excit- f(uy=bu(u—a;)(1—u). 3)
able and this is an indication of self-replication. Next, we
generalize the theory for self-replication of a propagatingThe parameters in Fig.(d are chosen a®,=0.09, D,
pulse. Although our analysis does not provide a rigorous cri=1, a;=0, b=10, y=0.38, andr=0.37. To our knowl-
terion for self-replication, it will be useful to see qualita- edge, this type of self-replication has not been reported pre-
tively the reason as to why self-replication occurs for certainviously.

In this section, we summarize the properties of self-
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FIG. 2. Phase diagram in tteg-7 plane in the BvP model, Egs.
(1) and (2) with Eg. (3). The BvP model has a subcritical Hopf
bifurcation pointa;=a,, such that a limit cycle solution appears
when a;<a,. For 7<7,, a traveling pulse is stable, whereas a
motionless pulse is stable fer> 7,,,. A breathing motion appears in

() the intervalr,<7<7y,.
FIG. 1. (a) Self-replication of a breathing pulse in the BvP 1 U—a a
model, Egs.(1) and (2) with Eq. (3). The parameters ar®, f(u)= =|tanh 2 | tanh22 —u, (6)
=0.09, D,=1, a,=0, b=10, y=0.38, andr=0.37. (b) Self- 2 6 o

replication of a pulse in Gray-Scott model, E¢4) and (5). The

parameters ar€ =0.04, k=0.0605,D,=2.0x10"°%, andD,=1.0  \wherea, and & are positive constants. An example is shown
X 1075, (c) Self-replication of a traveling pulse in Gray-Scott in Fig. 1(e) where a,=0.1, y=0, §=0.05, 7=0.35, D
model, Egs.(4) and (5). The parameters ar&=0.025 andk =10. andD.=1 v

— ' uT -

=0.0551. Other parameters are the same agbjn (d) Self- All of these results have been obtained by computer simu-
replication of a traveling pulse in the BvP model, E@S.and(2) |5i0ns S0 far, only a few theoretical investigations have
with Bq. (3). The parameters are the same aganexcept for - been made. As mentioned in the Introduction, we shall pro-
=0.3. (¢) Self-replication of a traveling pulse in the BvP model pose a criterion for self-replication, which is useful to under-

with hyperbolic nonlinearity, Eqs(1l) and (2) with Eq. (6). The . P
parameters ar®,=1, D,=10, 7=0.35, a,=0.1, 5=0.05, and stand the mechanism of self-replications shown above and
their mutual relationship.

vy=0. All the quantities in this figure and Figs. 2—10 below are
dimensionless.

. . . . _lll. INTERFACE DYNAMICS FOR A BREATHING PULSE
(3) A pulse increases its width monotonically and splits

into two pulseqd8]. An example is displayed in Fig.(H) for The Bonhoeffer—van der Pol systeify and (2) with the
the Gray-Scott model, cubic nonlinearity(3) reveals a variety of pulse dynamics.
Figure 2 represents a phase diagram obtained numerically.
£ 52 By choosing the parameters in which the system is
e Duﬁ —uv?+F(1-u), (4)  monostable, a traveling pulse exists for 7,, wherer, is a

certain bifurcation threshold. There is another bifurcation
) point 7,(>7p) such that whernr<r,,, a motionless pulse
&—U—D 0_v+ 2_(F+k 5 undergoes a breathing oscillation. This breathing pulse be-
gt Y ax? Uv™=( v ®) comes unstable for<7,(<r,). Therefore, there is a pa-
rameter regimer, <7<, where only a uniform solution is
The parameters used in F|g(b1 are F=0.04, k=0.0605, stable. It is emphaSized, however, that remarkable pulse dy'
D,=2.0x10"%, andD,=1.0x 10", namics is found in this apparently trivial region. When the
(4) A propagating pulse produces a daughter pulse at thearameter, is decreased keeping the monostability of the
tail region. This has been found in the Gray-Scott modeBystem, one can obtain a self-replicating pulse in this region
[3,9] and an exothermic reaction-diffusion modéB]. The  Tp<<7<7y, [7]. For 7=7,, a breathing pulse self-replicates
case of the Gray-Scott model is shown in Fi¢c)Wwhere the ~ as in Fig. 1a), whereas forr=7,, a self-replicating travel-
parameters ar€& =0.025, k=0.0551,D,=2.0x10"°%, and ing pulse appears as in Fig(d).
D,=1.0x10 °. A similar splitting of a pulse has also been ~ To analyze the self-replication in a tractable way, we

obtained in the Prague modd]. modify slightly Eqgs.(1) and(2),
(5) A propagating pulse splits into two pulses not at the
tail region but at the middle of a pulse. This occurs in the set au 52U
of Egs. (1) and(2) with Eq. (3) for the parameters, for ex- re—=e>—+f(u)—v, 7
ample, 7=0.3. Other parameters are the same as those in Jt Ix*
Fig. 1(a). This type of self-replication is shown in Fig(d).
(6) A pulse becomes very small and then survives again 2
splitting into two pulses, which is found in the BvP model a_v:Da_U+u_ yv (8)
(1) and (2) with a hyperbolic tangent nonlinearify,7] ot x> ’
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FIG. 3. The spatial variation af (solid line) andv (broken ling
for a symmetric pulse.

where we have replacesin Eq. (1) by e7 andD,, by €2. In
the limit e2<D as we assume, the set of E¢8) and(8) is
a prototype of excitable systems.
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For a technical convenience, we employ a simplified

piecewise linear form fof (u),

f(uy=—u+6(u—a), 9
whered(x) =1 for x>0 andd(x)=0 for x<0. This form of
f(u) is obtained from Eq(6) by taking the limit6—0.

In this section, we consider a symmetric pulse of Eg@s.
and (8) with Eq. (9), as shown in Fig. 3. In the limi&?

<D, the motion of a pulse can be represented in terms of th

position of the interfacesx==* »(t), which is defined
through the relation

u(= g(t),t)=a. (10

Wheny>al/(1—a), the set of Eqs(7) and(8) with Eq. (9)

1 . .
mp=1-2a— ﬁ[d)_ n=(¢+mexp—29//)]
™ (13)
where
b=(72+4DB)2 (14
y= 2P (15)
b
3 37 7
m— 8,857\/5 1+exp —2kny)+ 257D + D252
xXexp(—2k7n), 19

with B=1+y andk=(B/D)*2
By analyzing Eq.(13), one notes that there is a stable
otionless pulse when-12a—1/8<0 and 7> g, where
the threshold valueg generally depends anand3. On the
other hand, whenr<rg, a motionless pulse turns out un-
stable and undergoes a breathing oscillation.

IV. SELF-REPLICATION OF A BREATHING PULSE

It should be noted that we have not used the condition that

has two linearly stable uniform equilibrium solutions. That e system is bistable in the derivation of the interface equa-

is, the system is bistable. In this situation, the equation ofjon of motion(13). Therefore, as long as the interface width
motion for the interface has been derived by the singular

perturbation methofiLl4]. See also Ref.15]. Here we do not

is much smaller than that of the pulse width, i.es », the
equation of motion(13) for a pair of interacting interfaces

go into the details, but describe only the essential steps of thé'an be applied even for the monostable case that satisfies

derivation.

At the interface, the spatial variation ofis very steep
whereas that ob is quite smooth. Therefore, in the length
scale of the interface width, one may replacan Eq. (7) by
the value at the interface, . As a result, the interface equa-
tion of motion is given for a fixed value af, by

i
V(rm)?+4

The value ofv, is evaluated by solving Ed8). In the limit
e—0, we obtain from Eq(7),

—1-2a-2v,. (11)

u=6(n—x)0(n+x)—u. (12

Substituting this into Eq(8) and applying the short-time

expansion that is valid as far as the interface velocity is small

enough[14], we obtainv(x,t) and hence),=v (= 7,t). By
using the condition of the location of an interfati0), the
final form of the interface equation of motion is given by

(17

1 <1
—a<—.
B

However the derivation of Eq.13) contains implicitly the
assumption thati>a for — »<<x<<#%. If this condition is
violated, it means that there exist extra interfaces that con-
tradicts with the presumption that we are dealing with a
single pulse. Recall that the interface position has been de-
fined by Eq.(10). Therefore ifu inside the pulse becomes
smaller thana during the breathing oscillation, this is an
indication of self-replication of the pulse.

The variableu must take its minimum value at the center
of gravity x=0 for a symmetric pulse. From Eql2), we
note the relation

u=1l-v (18

for — p<x<%. Therefore after solving Eq8), the value
uy=u(0y) is readily evaluated as

036218-3



YUMINO HAYASE AND TAKAO OHTA

FIG. 4. Trajectory of the solution of the interface equat{@B)

for (a) 7=1.3, (b) 7=1.2, and(c) 7=0.7. Other parameters are set
to bea=0.05, y=0.03, andD=1. The broken line is a line where

the right-hand side of Eq(13) vanishes.»* is the equilibrium
solution.

1 1 N 2/ o= ol )= 3 N 37
Uy=1l——=+—]—exp—nl/)—
M B ¢ 7 Y 8B5/2D1/2 832D
2
+ BIBTZDW expl— k7). (19
The steady state value is given by
1 1 B
(eq) —q _ _
Uy '=1——=+—ex \/: ) 20

This is a decreasing function of andu{f9=1-1/8 for 7
— . This clearly shows than{$? is smaller thara in the
monostable situation given by E(L7). Thereforeu(s? be-
comes smaller thaa at a certain finite value of;.
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FIG. 5. (a) Equilibrium solution of Eq(13) for 7= 1.3 and limit
cycle solution of Eq.(13) for (b) 7=1.2 (¢) 7=1.17, and(d) =
=1.14. Other parameter are the same as in Fig. 4. The white dot in
(b), (c), and (d) indicates the unstable equilibrium solution. The
value ofuy, becomes smaller thaamin the gray region.

appears corresponding to the breathing motion of the pulse.
When 7=0.7, the pulse widthy diverges, as in Fig. (4).
These results are the same as those for the bistable case.
Now we study the situation where self-replication occurs.
The regions where the conditiong,>a and >0 are vio-
lated are indicated by the shaded area in Fig. 5. When
=1.3 in Fig. 5a), there is a stable equilibrium solution as in
Fig. 4@). Whenr= 1.2, a breathing oscillation occurs in Fig.
5(b) where the trajectory does not enter the shaded region.
However whenr=1.17, the amplitude of the oscillation be-
comes large as in Fig.(® and the trajectory enters into the

As was mentioned at the end of the preceding sectionegion whereuy>a. This is an indication of self-replication.

when >z and
a=1-2a—-1/B8<0, (21)

Equation(13) has a stable motionless pulse solution,

<9‘D——1\/§| 1+2a8- (22)

In this caseu(¢? is given by
ugV=1- 1 1(1+2aﬁ—ﬁ)1’2, (23

B B

which is always larger thaa.

If one decreases the value effurther, both the conditions
uy<a and »<<0 are not satisfied, as in Fig(dj, wherer
=1.14. In this case an oscillating pulse undergoes either
self-replication or annihilation depending on the initial con-
dition.

Figure 6 displays the time evolution af anduy, for the
same values as in Figs(a, 5(b), and §c¢). In Figs. §a) and
6(b), the lowest value ofly, is always larger thaa whereas,
in Fig. 6(c), uy, becomes smaller tham after several oscil-
lations as indicated by the arrow. This causes a self-
replication of the breathing pulse. The reason why the con-
dition =<0 is necessary is due to the fact that the unstable
equilibrium value7(¢9 is large in this situation as is seen
from Egs.(21) and (22) so that the trajectory of the limit
cycle oscillation easily enters in the regiag,>a before

Now we investigate self-replication of a pulse, which is pecomes negative. The time dependencepadnd u,, for
described by Eqd13) and (19). The numerical simulations  smajler values of is given in Fig. 7 where all other param-
of Egs. (1) and (2) with Eq. (3) have revealed that self- gters are the same as those in Figd)5In Fig. 7a), uy,
replication of a pulse occurs when the equilibrium pulsepecomes smaller tham after two times of oscillation at the

width is not small in the monostable region. From EdS),
(21), and(22), this is satisfied foa~0 andB8~1. In what
follows, we analyze Eq(13) in this condition.

Figure 4 displays the trajectories in the- 7 plain for

instant indicated by the arrow in the lower figure. However,
starting with the different initial conditiony becomes nega-

tive without oscillation at the time indicated by the arrow as
in the upper Fig. ®) and hence an annihilation of pulse

a=0.05,y=0.03, andd =1, and by changing the parameter occurs in this case. Koga and Kuramdgt6] have shown

7. For these parameters, the bifurcation threshglis given

that an annihilation of a breathing pulse appears in the man-

by 75=1.22. In fact, whenr=1.3, the trajectory converges ner mentioned above for the values ofufficiently below

to the equilibrium solutiori22), as in Fig. 4a). For a slightly

smaller value ofr=1.2 in Fig. 4b), a limit cycle oscillation

the bifurcation threshold. However, they have not discussed
the possibility of self-replication.
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1/\/\/\/\"""”‘— 1 2 FIG. 6. Time evolution ofyn
1 anduy, in Egs.(13) and (19 for
0 R 0 : 00 30 40 60 80 100 120 (@ r=1.3, (b) 7=1.2, and(c) 7
10 20 40 60 80 100 120 10 20 40 60 80 100 120t { —1.17. Other parameter are the
Uy Uy wl — same as in Fig. 4. The thin line in
08 08 the lower figures shows the value
0.6

0.6 of a. The vertical arrow inc) in-
0.4 dicates the instant thatiy, be-
02 comes smaller thaa.

a

----------------------

20 40 60 80 100 120 0~ 3 40 60 80 100 120
t
(a) (b) (c)

When the value of is decreased further, the pulse width resent dynamics of a pair of pulses born by self-replication,
becomes infinite asymptotically without oscillation. How- one needs to formulate self-replication of a transiently trav-
ever, the transient behavior of the pulse depends sensitivebling pulse.
on the initial condition. Figure 8 displays the typical three  Dynamics of a traveling pulse can also be described by
cases forr=0.7. In Fig. &), we start with the initial con-  the interface dynamics for the from and the back, of a
dition »>0. The middle valuau,, decreases and becomes pulse in Fig. 9. Equation of motion for the positionsand
smaller thana at the time indicated by the arrow. This ap- z, has been derived from Eqgé?) and (8) with Eq. (9) as
parently corresponds to the self-replication shown in Fig{17]

1(b). However, we note the following fact. The interface
equation of motior{13) has been derived under the condition
thatD,<D, , whereas this ratio is of the order of unity in the
Gray-Scott model. Therefore, the above similarity should be
regarded only as qualitative.

If »<O0 initially, » becomes negative before it begins to ~2)]
increase, this implies an annihilation of a pulse. However, if 2

the magnitude of the initial velocityy (<0) is slightly
smaller, one encounters a different situation. The width of
the pulse decreases at the early stage. After an elasticlike
collision of the two interfaces of the pulse, the pulse begins
to expand and then undergoes self-replication as shown in

Fig. 8(c).

V. SELF-REPLICATION FOR AN ASYMMETRIC PULSE

...........

a)
0 20 40 60 80 100 1t20

moil—n(21—22)2221—28—2

1 (=)
B —Ci—Crexd — k3 '(z3

™ 24
V(7292 +4

noiz_ m(Zl—Zz)ilz -1+ 2a+2

1
E_Cl exd — K(1+)(Zl

T22

2 (25
V(72,)%+ 4 (9

-2))]-¢,

Self-replication can be seen not only for a breathing pulse
but also for a traveling pulse. Furthermore, in order to repwhere

8 8
n 7t n 7+
6f 6l
5t st
a4t a4t
3t 3t
2t 2 FIG. 7. Time evolution ofy anduy, in Egs.
(1) (1)' (13) and (19) for 7=1.14. Whether a pulse self-
4 1 replicates or disappears depends on the initial
0 20 40 60 80 100 o 5 10 15 20 25 30 conditions. The thin line in the lower figures
shows the value od. The arrow in(a) shows the
Uyl — — Uy ; ; : : ‘ instant where uy,, becomes smaller thara
03l ] 08l ] whereas the arrow irib) indicates the time be-
yond which » becomes negative. Other param-
0.6¢ 1 0.6r eters are the same as in Fig. 4. Initial conditions
0.4 0.4} ] are different betweera) and (b).
02! ] 0.2}
0 L L L T T =% T 1 i 0 L T T T 1
0 20 40 60 30 1t 0 5 10 15 20 25 3{)
(@ (b)
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FIG. 8. Time evolution ofyn

20

10

anduy, in Egs.(13) and (19 for
7=0.7, starting with the different
initial conditions. The thin line in
the lower figures shows the value
of a. (@) Monotonous increase of

the pulse width causes self-
replication at the instant indicated
by the arrow beyond whichuy,

Uy ! il <a. (b) A pulse shrinks and dis-
0.8 0.8 appears at the instant shown by
0.6 0.6 the arrow wherey becomes nega-
04 0.4 tive. (c) The pulse width decreases
0-2-\[ 0.2} first, then increases, and it under-

a goes self-replication at the instant
o 2 4 6 8 1? ¢ 2 4 6 810 2 4 6 810 1t2 indicated by the arrow wheray,
(a) (b) () becomes smaller thaa. All the
parameters are the same as in Fig.
4(c).
2 2 D «{H)
m(z)={@+22+z—3 exp(— «${Mz), (26) U=1-vpma=1— 5+ . ext — «{(z;—x*)]
CEMPTRAE B B
2 2 D" Yok
n(z)= 122 + 224— 2—3 exp(—«$72), (2D 54, exil — 3 (¢~ )],
2 2 2 (30
(=)_ 1 . We solve numerically Eqsi24), (25), and (30) for the
Ki _ﬁ(‘ﬁi +Zz), (28) fixed parametera=0.05, y=0.03, andD=1, as in the pre-

for z>0 with ¢;=(z2+4BD)*? and my=m(0) and n,

=n(0). This set of equations has been obtained by assumin
that the system is bistable. However, by imposing the restric-

tion uy>a as in the preceding section, Eq24) and (25)
can be applied to the monostable case as well.

Since the shape of a traveling pulse is asymmetric wit

respect to the center of gravity,
position whereu takes the minimum value. From the profile
of v obtained from Eq(8) with (12) by the singular pertur-
bation, we have

1
x* —( k{214 k52,4 1n

(K415 )

b
b k7]

(29)
The valueuy, atx=x* is given by

u,v

Uy

0 L X

<
Z:

FIG. 9. The spatial variation af (solid line) andv (broken ling
for an asymmetric pulse.

one needs to determine the

ceding section, to study self-replication of a traveling pulse.
It is found numerically that a stable traveling pulse appears
for 7<7,(=0.78).

9" Since we have removed the symmetry of a pulse and al-
lowed an independent motion for the front and the back, new
types of self-replication are possible. One is shown in Fig.

th(a) for 7=0.79 where a traveling pulse slows down and

after an elasticlike collision of the front and the back, the
pulse self-replicates. This type of behavior has been ob-
served in the BvP modéll) and (2) with Eq. (3) as in Fig.
1(d).

For a slightly larger value of=0.9, and by choosing the
initial condition appropriately, a traveling pulse causes an
oscillation of its width once and then undergoes self-
replication, as shown in Fig. 16). This has been observed
in the BvP model in Fig. @) of Ref.[8].

VI. DISCUSSION

So far, no theory has been available to represent quantita-
tively the process of self-replication. Only the stability of a
traveling or a motionless pulse has been formulated math-
ematically. However, it has not been applied to a breathing
pulse.

In the present paper, we have shown that the condition
that if the value ofu becomes smaller thaaminside a pulse,
this is an indication of self-replication. Although this is only
a necessary condition for self-replication, this criterion is
useful for understanding the self-replication of a breathing
pulse and a transiently traveling pulse. In fact, our prediction
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20t

FIG. 10. Time evolution ofy anduy, in Egs.
(24), (25), and (30) for (a) 7=0.79 and(b) 7
=0.9. The dotted line in the upper figures is the

-4

Uy ! ' ' ' ' ‘ Uy ! ' ' ‘ trajectory of the minimum ofi in the pulse pro-
0.8 1 0.8 1 file. The thin line in the lower figures shows the
0.6l ] 06l value ofa. Other parameter are the same as in

Fig. 4.
041 1 041
0.2-\/\/\/\/\/\ 1 0.2¢
a ; , , , ‘ a ; : ‘
0 10 20 30 40 30 0 5 10 15 20
t
(@) (b)

can be compared successfully to those found by computexa, it is possible to explore, even in higher dimensions,
simulations of several reaction-diffusion equations. The esself-replication of domain which takes an annulus transiently.
sence of self-replication is the existence of an unstable pulsg/e hope to return to these problems somewhere in the fu-
that does not simply annihilate, but splits into two pulsestyre.
when the width becomes large. It is noted that the repeated
self-replication can also be described by applying succes-
sively the methods in Secs. IV and V. ACKNOWLEDGMENTS
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