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Self-replication of a pulse in excitable reaction-diffusion systems
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We investigate self-replication of a pulse in Bonhoffer–van der Pol type reaction-diffusion systems in one
dimension. The interface dynamics of front and back of a pulse developed for a bistable system is extended to
a monostable case, which is useful to clarify the mechanism of the self-replication. We shall show that the
threshold parameter for excitability plays the central role for self-replication. The present theory can be applied
not only to a symmetric pulse, but also to a propagating asymmetric pulse.
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I. INTRODUCTION

Self-replication of a pulse in reaction-diffusion media h
been observed in real experiments and in numerical sim
tions since the early 90s. In the ferrocyanide-iodate-sul
chemical reaction, domains having a highp H concentration
grow and beyond a critical size, each of them deform a
splits into two domains@1#. A quite similar phenomenon ha
been obtained by numerical simulations of the Gray-Sc
model in two dimensions@2#. In one-dimensional simula
tions, self-replication of a pulse has been found not only
the Gray-Scott model@3# but also in other excitable reactio
diffusion systems, such as the Bonhoffer–van der Pol~BvP!
model @4# and the Prague model@5,6#. Therefore, the self-
replication is very common to excitable media. Furthermo
it has been found that self-replication causes regular s
similar spatiotemporal patterns@4,7,8#.

At present, there are a few theoretical studies of th
self-replications. A qualitative analysis of the transient b
havior of an unstable pulse near a saddle-node bifurca
has been made@9#. A more quantitative theory including self
replication of a traveling pulse has been proposed by Eiet al.
to focus on the slow manifold associated with the pulse m
tion @10#. However, self-replication of a breathing pulse h
not been studied so far.

In the present paper, we investigate the condition for s
replication of a pulse in excitable reaction-diffusion syste
in one dimension. First, we consider a breathing pulse wh
the pulse width is oscillating. In the singular limit, such th
the interfaces~front and back! of a pulse is much smalle
than the pulse width, we derive the equation of motion
the interacting interfaces, which is applicable not only to
bistable situation but also to a monostable situation. T
theory starts with the assumption that there is a pair of in
faces for a single pulse. However, we will show that th
assumption does not always hold when the system is e
able and this is an indication of self-replication. Next, w
generalize the theory for self-replication of a propagat
pulse. Although our analysis does not provide a rigorous
terion for self-replication, it will be useful to see qualita
tively the reason as to why self-replication occurs for cert
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parameter regime and its initial value dependence.
In Sec. II, we summarize the behavior of self-replicati

of a pulse obtained numerically in several reaction-diffus
systems. The interface dynamics for a breathing pulse in
Bonheffer–van der Pol type reaction-diffusion equation
given in Sec. III, and the condition for self-replication
derived. In Sec. IV, we extend our analysis to self-replicat
of a propagating pulse. Discussion of the results obtaine
given in Sec. V.

II. VARIOUS TYPES OF SELF-REPLICATION

In this section, we summarize the properties of se
replication of a pulse found in reaction-diffusion system
which is classified as follows.

~1! By changing the parameters, a motionless pulse
comes unstable in an excitable reaction-diffusion syst
when the pulse width exceeds a certain critical value a
splits symmetrically into two pulses. This has been stud
by Kerner and Osipov@11#. A similar replication is also
found in the Gray-Scott model given by Eqs.~4! and ~5!
given below@12#.

~2! A breathing pulse self-replicates at the instant that
width becomes maximum@8#. Figure 1~a! shows an example
obtained in the BvP-type equations,

t
]u

]t
5Du

]2u

]x2
1 f ~u!2v, ~1!

]v
]t

5Dv

]2v

]x2
1u2gv, ~2!

where

f ~u!5bu~u2a1!~12u!. ~3!

The parameters in Fig. 1~a! are chosen asDu50.09, Dv
51, a150, b510, g50.38, andt50.37. To our knowl-
edge, this type of self-replication has not been reported p
viously.
©2002 The American Physical Society18-1
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~3! A pulse increases its width monotonically and spl
into two pulses@8#. An example is displayed in Fig. 1~b! for
the Gray-Scott model,

]u

]t
5Du

]2u

]x2
2uv21F~12u!, ~4!

]v
]t

5Dv

]2v

]x2
1uv22~F1k!v. ~5!

The parameters used in Fig. 1~b! are F50.04, k50.0605,
Du52.031025, andDv51.031025.

~4! A propagating pulse produces a daughter pulse at
tail region. This has been found in the Gray-Scott mo
@3,9# and an exothermic reaction-diffusion model@13#. The
case of the Gray-Scott model is shown in Fig. 1~c! where the
parameters areF50.025, k50.0551, Du52.031025, and
Dv51.031025. A similar splitting of a pulse has also bee
obtained in the Prague model@8#.

~5! A propagating pulse splits into two pulses not at t
tail region but at the middle of a pulse. This occurs in the
of Eqs. ~1! and ~2! with Eq. ~3! for the parameters, for ex
ample, t50.3. Other parameters are the same as thos
Fig. 1~a!. This type of self-replication is shown in Fig. 1~d!.

~6! A pulse becomes very small and then survives ag
splitting into two pulses, which is found in the BvP mod
~1! and ~2! with a hyperbolic tangent nonlinearity@4,7#

FIG. 1. ~a! Self-replication of a breathing pulse in the Bv
model, Eqs.~1! and ~2! with Eq. ~3!. The parameters areDu

50.09, Dv51, a150, b510, g50.38, andt50.37. ~b! Self-
replication of a pulse in Gray-Scott model, Eqs.~4! and ~5!. The
parameters areF50.04, k50.0605,Du52.031025, andDv51.0
31025. ~c! Self-replication of a traveling pulse in Gray-Sco
model, Eqs.~4! and ~5!. The parameters areF50.025 andk
50.0551. Other parameters are the same as in~b!. ~d! Self-
replication of a traveling pulse in the BvP model, Eqs.~1! and ~2!
with Eq. ~3!. The parameters are the same as in~a! except fort
50.3. ~e! Self-replication of a traveling pulse in the BvP mod
with hyperbolic nonlinearity, Eqs.~1! and ~2! with Eq. ~6!. The
parameters areDu51, Dv510, t50.35, a250.1, d50.05, and
g50. All the quantities in this figure and Figs. 2–10 below a
dimensionless.
03621
e
l

t

in

in

f ~u!5
1

2 F tanh
u2a2

d
1tanh

a2

d G2u, ~6!

wherea2 andd are positive constants. An example is show
in Fig. 1~e! where a250.1, g50, d50.05, t50.35, Dv
510, andDu51.

All of these results have been obtained by computer sim
lations. So far, only a few theoretical investigations ha
been made. As mentioned in the Introduction, we shall p
pose a criterion for self-replication, which is useful to und
stand the mechanism of self-replications shown above
their mutual relationship.

III. INTERFACE DYNAMICS FOR A BREATHING PULSE

The Bonhoeffer–van der Pol system~1! and ~2! with the
cubic nonlinearity~3! reveals a variety of pulse dynamic
Figure 2 represents a phase diagram obtained numerica

By choosing the parameters in which the system
monostable, a traveling pulse exists fort,tp , wheretp is a
certain bifurcation threshold. There is another bifurcati
point tm(.tp) such that whent,tm , a motionless pulse
undergoes a breathing oscillation. This breathing pulse
comes unstable fort,tb(,tm). Therefore, there is a pa
rameter regimetp,t,tb where only a uniform solution is
stable. It is emphasized, however, that remarkable pulse
namics is found in this apparently trivial region. When t
parametera1 is decreased keeping the monostability of t
system, one can obtain a self-replicating pulse in this reg
tp,t,tb @7#. For t&tb , a breathing pulse self-replicate
as in Fig. 1~a!, whereas fort*tp , a self-replicating travel-
ing pulse appears as in Fig. 1~d!.

To analyze the self-replication in a tractable way, w
modify slightly Eqs.~1! and ~2!,

te
]u

]t
5e2

]2u

]x2
1 f ~u!2v, ~7!

]v
]t

5D
]2v

]x2
1u2gv, ~8!

FIG. 2. Phase diagram in thea1-t plane in the BvP model, Eqs
~1! and ~2! with Eq. ~3!. The BvP model has a subcritical Hop
bifurcation pointa15ah such that a limit cycle solution appear
when a1,ah . For t,tp , a traveling pulse is stable, whereas
motionless pulse is stable fort.tm . A breathing motion appears in
the intervaltb,t,tm .
8-2
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where we have replacedt in Eq. ~1! by et andDu by e2. In
the limit e2!D as we assume, the set of Eqs.~7! and ~8! is
a prototype of excitable systems.

For a technical convenience, we employ a simplifi
piecewise linear form forf (u),

f ~u!52u1u~u2a!, ~9!

whereu(x)51 for x.0 andu(x)50 for x,0. This form of
f (u) is obtained from Eq.~6! by taking the limitd→0.

In this section, we consider a symmetric pulse of Eqs.~7!
and ~8! with Eq. ~9!, as shown in Fig. 3. In the limite2

!D, the motion of a pulse can be represented in terms of
position of the interfacesx56h(t), which is defined
through the relation

u„6h~ t !,t…5a . ~10!

Wheng.a/(12a), the set of Eqs.~7! and~8! with Eq. ~9!
has two linearly stable uniform equilibrium solutions. Th
is, the system is bistable. In this situation, the equation
motion for the interface has been derived by the singu
perturbation method@14#. See also Ref.@15#. Here we do not
go into the details, but describe only the essential steps o
derivation.

At the interface, the spatial variation ofu is very steep
whereas that ofv is quite smooth. Therefore, in the leng
scale of the interface width, one may replacev in Eq. ~7! by
the value at the interfacev I . As a result, the interface equa
tion of motion is given for a fixed value ofv I by

tḣ

A~tḣ !214
5122a22v I . ~11!

The value ofv I is evaluated by solving Eq.~8!. In the limit
e→0, we obtain from Eq.~7!,

u5u~h2x!u~h1x!2v. ~12!

Substituting this into Eq.~8! and applying the short-time
expansion that is valid as far as the interface velocity is sm
enough@14#, we obtainv(x,t) and hencev I5v(6h,t). By
using the condition of the location of an interface~10!, the
final form of the interface equation of motion is given by

FIG. 3. The spatial variation ofu ~solid line! andv ~broken line!
for a symmetric pulse.
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mḧ5122a2
1

bf
@f2ḣ2~f1ḣ !exp~22h/l !#

2
tḣ

A~tḣ !214
, ~13!

where

f5~ ḣ214Db!1/2, ~14!

l 5
2D

f2ḣ
, ~15!

m5
3

8b5/2AD
F11exp~22kh!1F 3h

4b2D
1

h2

2D3/2b3/2G
3exp~22kh!, ~16!

with b511g andk5(b/D)1/2.
By analyzing Eq.~13!, one notes that there is a stab

motionless pulse when 122a21/b,0 and t.tB , where
the threshold valuetB generally depends ona andb. On the
other hand, whent,tB , a motionless pulse turns out un
stable and undergoes a breathing oscillation.

IV. SELF-REPLICATION OF A BREATHING PULSE

It should be noted that we have not used the condition
the system is bistable in the derivation of the interface eq
tion of motion~13!. Therefore, as long as the interface wid
is much smaller than that of the pulse width, i.e.,e!h, the
equation of motion~13! for a pair of interacting interfaces
can be applied even for the monostable case that satisfi

12a,
1

b
. ~17!

However the derivation of Eq.~13! contains implicitly the
assumption thatu.a for 2h,x,h. If this condition is
violated, it means that there exist extra interfaces that c
tradicts with the presumption that we are dealing with
single pulse. Recall that the interface position has been
fined by Eq.~10!. Therefore ifu inside the pulse become
smaller thana during the breathing oscillation, this is a
indication of self-replication of the pulse.

The variableu must take its minimum value at the cent
of gravity x50 for a symmetric pulse. From Eq.~12!, we
note the relation

u512v ~18!

for 2h,x,h. Therefore after solving Eq.~8!, the value
uM5u(0,t) is readily evaluated as
8-3
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YUMINO HAYASE AND TAKAO OHTA PHYSICAL REVIEW E 66, 036218 ~2002!
uM512
1

b
1

2l

f
exp~2h/l !2ḧF 3

8b5/2D1/2
1

3h

8b2D

1
h2

8b3/2D3/2Gexp~2kh!. ~19!

The steady state value is given by

uM
(eq)512

1

b
1

1

b
expS 2Ab

D
h D . ~20!

This is a decreasing function ofh anduM
(eq)5121/b for h

→`. This clearly shows thatuM
(eq) is smaller thana in the

monostable situation given by Eq.~17!. ThereforeuM
(eq) be-

comes smaller thana at a certain finite value ofh.
As was mentioned at the end of the preceding sect

whent.tB and

a5122a21/b,0, ~21!

Equation~13! has a stable motionless pulse solution,

h (eq)52
1

2
AD

b
ln~112ab2b!. ~22!

In this case,uM
(eq) is given by

uM
(eq)512

1

b
1

1

b
~112ab2b!1/2, ~23!

which is always larger thana.
Now we investigate self-replication of a pulse, which

described by Eqs.~13! and ~19!. The numerical simulations
of Eqs. ~1! and ~2! with Eq. ~3! have revealed that self
replication of a pulse occurs when the equilibrium pu
width is not small in the monostable region. From Eqs.~17!,
~21!, and ~22!, this is satisfied fora;0 andb;1. In what
follows, we analyze Eq.~13! in this condition.

Figure 4 displays the trajectories in theh2ḣ plain for
a50.05,g50.03, andD51, and by changing the paramet
t. For these parameters, the bifurcation thresholdtB is given
by tB51.22. In fact, whent51.3, the trajectory converge
to the equilibrium solution~22!, as in Fig. 4~a!. For a slightly
smaller value oft51.2 in Fig. 4~b!, a limit cycle oscillation

FIG. 4. Trajectory of the solution of the interface equation~13!
for ~a! t51.3, ~b! t51.2, and~c! t50.7. Other parameters are s
to bea50.05, g50.03, andD51. The broken line is a line where
the right-hand side of Eq.~13! vanishes.h* is the equilibrium
solution.
03621
n,

appears corresponding to the breathing motion of the pu
When t50.7, the pulse widthh diverges, as in Fig. 4~c!.
These results are the same as those for the bistable cas

Now we study the situation where self-replication occu
The regions where the conditionsuM.a andh.0 are vio-
lated are indicated by the shaded area in Fig. 5. Whet
51.3 in Fig. 5~a!, there is a stable equilibrium solution as
Fig. 4~a!. Whent51.2, a breathing oscillation occurs in Fig
5~b! where the trajectory does not enter the shaded reg
However whent51.17, the amplitude of the oscillation be
comes large as in Fig. 5~c! and the trajectory enters into th
region whereuM.a. This is an indication of self-replication
If one decreases the value oft further, both the conditions
uM,a and h,0 are not satisfied, as in Fig. 5~d!, wheret
51.14. In this case an oscillating pulse undergoes eit
self-replication or annihilation depending on the initial co
dition.

Figure 6 displays the time evolution ofh anduM for the
same values as in Figs. 5~a!, 5~b!, and 5~c!. In Figs. 6~a! and
6~b!, the lowest value ofuM is always larger thana whereas,
in Fig. 6~c!, uM becomes smaller thana after several oscil-
lations as indicated by the arrow. This causes a s
replication of the breathing pulse. The reason why the c
dition a&0 is necessary is due to the fact that the unsta
equilibrium valueh (eq) is large in this situation as is see
from Eqs. ~21! and ~22! so that the trajectory of the limi
cycle oscillation easily enters in the regionuM.a beforeh
becomes negative. The time dependence ofh and uM for
smaller values oft is given in Fig. 7 where all other param
eters are the same as those in Fig. 5~d!. In Fig. 7~a!, uM
becomes smaller thana after two times of oscillation at the
instant indicated by the arrow in the lower figure. Howev
starting with the different initial condition,h becomes nega
tive without oscillation at the time indicated by the arrow
in the upper Fig. 7~b! and hence an annihilation of puls
occurs in this case. Koga and Kuramoto@16# have shown
that an annihilation of a breathing pulse appears in the m
ner mentioned above for the values oft sufficiently below
the bifurcation threshold. However, they have not discus
the possibility of self-replication.

FIG. 5. ~a! Equilibrium solution of Eq.~13! for t51.3 and limit
cycle solution of Eq.~13! for ~b! t51.2 ~c! t51.17, and~d! t
51.14. Other parameter are the same as in Fig. 4. The white d
~b!, ~c!, and ~d! indicates the unstable equilibrium solution. Th
value ofuM becomes smaller thana in the gray region.
8-4
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FIG. 6. Time evolution ofh
and uM in Eqs. ~13! and ~19! for
~a! t51.3, ~b! t51.2, and~c! t
51.17. Other parameter are th
same as in Fig. 4. The thin line in
the lower figures shows the valu
of a. The vertical arrow in~c! in-
dicates the instant thatuM be-
comes smaller thana.
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When the value oft is decreased further, the pulse wid
becomes infinite asymptotically without oscillation. How
ever, the transient behavior of the pulse depends sensiti
on the initial condition. Figure 8 displays the typical thr
cases fort50.7. In Fig. 8~a!, we start with the initial con-
dition ḣ.0. The middle valueuM decreases and becom
smaller thana at the time indicated by the arrow. This a
parently corresponds to the self-replication shown in F
1~b!. However, we note the following fact. The interfac
equation of motion~13! has been derived under the conditio
thatDu!Dv , whereas this ratio is of the order of unity in th
Gray-Scott model. Therefore, the above similarity should
regarded only as qualitative.

If ḣ,0 initially, h becomes negative before it begins
increase, this implies an annihilation of a pulse. However
the magnitude of the initial velocityḣ (,0) is slightly
smaller, one encounters a different situation. The width
the pulse decreases at the early stage. After an elasti
collision of the two interfaces of the pulse, the pulse beg
to expand and then undergoes self-replication as show
Fig. 8~c!.

V. SELF-REPLICATION FOR AN ASYMMETRIC PULSE

Self-replication can be seen not only for a breathing pu
but also for a traveling pulse. Furthermore, in order to r
03621
ly

.

e

if

f
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s
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e
-

resent dynamics of a pair of pulses born by self-replicati
one needs to formulate self-replication of a transiently tr
eling pulse.

Dynamics of a traveling pulse can also be described
the interface dynamics for the frontz1 and the backz2 of a
pulse in Fig. 9. Equation of motion for the positionsz1 and
z2 has been derived from Eqs.~7! and ~8! with Eq. ~9! as
@17#

m0z̈12n~z12z2!z̈25122a22F 1

b
2c12c2 exp@2k2

(2)~z1

2z2!#G2
t ż1

A~t ż1!214
, ~24!

n0z̈22m~z12z2!z̈152112a12F 1

b
2c1 exp@2k1

(1)~z1

2z2!#2c2G2
t ż2

A~t ż2!214
, ~25!

where
-
tial
s

-
ns
FIG. 7. Time evolution ofh and uM in Eqs.
~13! and ~19! for t51.14. Whether a pulse self
replicates or disappears depends on the ini
conditions. The thin line in the lower figure
shows the value ofa. The arrow in~a! shows the
instant where uM becomes smaller thana
whereas the arrow in~b! indicates the time be-
yond which h becomes negative. Other param
eters are the same as in Fig. 4. Initial conditio
are different between~a! and ~b!.
8-5
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FIG. 8. Time evolution ofh
and uM in Eqs. ~13! and ~19! for
t50.7, starting with the different
initial conditions. The thin line in
the lower figures shows the valu
of a. ~a! Monotonous increase o
the pulse width causes self
replication at the instant indicate
by the arrow beyond whichuM

,a. ~b! A pulse shrinks and dis-
appears at the instant shown b
the arrow whereh becomes nega-
tive. ~c! The pulse width decrease
first, then increases, and it unde
goes self-replication at the instan
indicated by the arrow whereuM

becomes smaller thana. All the
parameters are the same as in F
4~c!.
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m~z!5F12D

f1
5

1
6D

f1
4

z1
z

f1
3Gexp~2k1

(1)z!, ~26!

n~z!5F12D2

f2
5

1
6D

f2
4

z1
z2

f2
3Gexp~2k2

(2)z!, ~27!

k i
(6)5

1

2D
~f i7 żi !, ~28!

for z.0 with f i5( żi
214bD)1/2 and m05m(0) and n0

5n(0). This set of equations has been obtained by assum
that the system is bistable. However, by imposing the res
tion uM.a as in the preceding section, Eqs.~24! and ~25!
can be applied to the monostable case as well.

Since the shape of a traveling pulse is asymmetric w
respect to the center of gravity, one needs to determine
position whereu takes the minimum value. From the profi
of v obtained from Eq.~8! with ~12! by the singular pertur-
bation, we have

x* 5
1

~k1
(1)1k2

(2)!
S k1

(1)z11k2
(2)z21 ln

f1k2
(1)k2

(2)

f2k1
(1)k1

(2)D .

~29!

The valueuM at x5x* is given by

FIG. 9. The spatial variation ofu ~solid line! andv ~broken line!
for an asymmetric pulse.
03621
g
c-
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uM512vmax512
1

b
1

1

bf1
exp@2k1

(1)~z12x* !#

1
Dk2

(1)

bf2
exp@2k2

(2)~x* 2z2!#.

~30!

We solve numerically Eqs.~24!, ~25!, and ~30! for the
fixed parametersa50.05,g50.03, andD51, as in the pre-
ceding section, to study self-replication of a traveling pul
It is found numerically that a stable traveling pulse appe
for t,tp(50.78).

Since we have removed the symmetry of a pulse and
lowed an independent motion for the front and the back, n
types of self-replication are possible. One is shown in F
10~a! for t50.79 where a traveling pulse slows down a
after an elasticlike collision of the front and the back, t
pulse self-replicates. This type of behavior has been
served in the BvP model~1! and ~2! with Eq. ~3! as in Fig.
1~d!.

For a slightly larger value oft50.9, and by choosing the
initial condition appropriately, a traveling pulse causes
oscillation of its width once and then undergoes se
replication, as shown in Fig. 10~b!. This has been observe
in the BvP model in Fig. 6~b! of Ref. @8#.

VI. DISCUSSION

So far, no theory has been available to represent quan
tively the process of self-replication. Only the stability of
traveling or a motionless pulse has been formulated m
ematically. However, it has not been applied to a breath
pulse.

In the present paper, we have shown that the condi
that if the value ofu becomes smaller thana inside a pulse,
this is an indication of self-replication. Although this is on
a necessary condition for self-replication, this criterion
useful for understanding the self-replication of a breath
pulse and a transiently traveling pulse. In fact, our predict
8-6
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FIG. 10. Time evolution ofh anduM in Eqs.
~24!, ~25!, and ~30! for ~a! t50.79 and~b! t
50.9. The dotted line in the upper figures is th
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can be compared successfully to those found by comp
simulations of several reaction-diffusion equations. The
sence of self-replication is the existence of an unstable p
that does not simply annihilate, but splits into two puls
when the width becomes large. It is noted that the repea
self-replication can also be described by applying succ
sively the methods in Secs. IV and V.

Since self-replication occurs, in two or higher dimensio
through a peanutlike deformation of a domain, the pres
theory cannot be applied. However, if one combines the
bility of a disk-shaped domain and the present criterionuM
y,
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,a, it is possible to explore, even in higher dimension
self-replication of domain which takes an annulus transien
We hope to return to these problems somewhere in the
ture.
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